Mixture Component Identification and Learning for Visual Recognition
نویسندگان
چکیده
The non-linear decision boundary between object and background classes due to large intra-class variations needs to be modelled by any classifier wishing to achieve good results. While a mixture of linear classifiers is capable of modelling this non-linearity, learning this mixture from weakly annotated data is non-trivial and is the paper’s focus. Our approach is to identify the modes in the distribution of our positive examples by clustering, and to utilize this clustering in a latent SVM formulation to learn the mixture model. The clustering relies on a robust measure of visual similarity which suppresses uninformative clutter by using a novel representation based on the exemplar SVM. This subtle clustering of the data leads to learning better mixture models, as is demonstrated via extensive evaluations on Pascal VOC 2007. The final classifier, using a HOG representation of the global image patch, achieves performance comparable to the state-of-the-art while being more efficient at detection time.
منابع مشابه
Recognition of professional competence of physical education teachers with grounded theory approach
Physical education teachers are an essential component of Sports teaching in schools and as the founder exercise much influence on all the sports section of country, Recognition of professional competence necessary is their main purpose of this survey. This qualitative study and practices underlying theory (Grounded) was performed. The statistical population was included of elite physical educa...
متن کاملAircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملMachine learning based Visual Evoked Potential (VEP) Signals Recognition
Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...
متن کاملمدل ترکیبی تحلیل مؤلفه اصلی احتمالاتی بانظارت در چارچوب کاهش بعد بدون اتلاف برای شناسایی چهره
In this paper, we first proposed the supervised version of probabilistic principal component analysis mixture model. Then, we consider a learning predictive model with projection penalties, as an approach for dimensionality reduction without loss of information for face recognition. In the proposed method, first a local linear underlying manifold of data samples is obtained using the supervised...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کامل